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Abstract - The study of the electroencephalographic (EEG) sig-
nal contributes to sleep analysis.  In the microstructure of the 
sleep EEG signal, transient patterns are characterized by their 
frequency content and their time duration. The Time–
Frequency Representations (TFR) take into account these time –
frequency characteristics but the lower energy transient signals 
are masked by higher energy ones.  In order to overcome this 
problem, we introduced a method to decompose signals into a 
summation of oscillatory components with time varying fre-
quency, amplitude and phase characteristics, based on the 
Tufts-Kumaresan algorithm.  The resulting parameters, i.e. 
amplitude and frequency, are then used to train joint linear 
filtering operations of the TFR in the time - frequency domain.  
The aim of this work is to improve the classical TFR analysis for 
detecting frequency transients over short time duration, to re-
duce the amount of useful information to few parameters that 
help medical doctors to analyze the microstructure of sleep by 
correlating information estimated from different signals.  
Keywords - Electroencephalogram, parametric analysis, time 
frequency representation, transient detection.   

 
I. INTRODUCTION 

 
The physiological investigation of sleep implies the ac-

quisition and the study of several types of signals.  The poly-
somnographic recordings allow to analyze at the same time 
the organization of sleep in stages and cycles and, in a finer 
way, the microstructure of the registered signals.  The brain 
activities are characterized by their frequency, their ampli-
tude, their morphology, their stability, their topography and 
their ability to react.  They are classified according to their 
wave band.  These constituents constitute the microstructure 
of the sleep and the stage of sleep is largely identified from 
the microstructure.  

Within the framework of the electroencephalographic 
(EEG) signal in particular, it turns out indispensable to make 
the recognition of the transient phenomena (points vertexes, 
spindles, K complexes, micro-arousal reactions).  Indeed, the 
presence of specific waves such as spindles allows to distin-
guish the various stages of the sleep and, so, to draw a global 
representation of a night of sleep and to estimate its general 
organization (hypnogram).   

Furthermore, the spindles, the K complexes and espe-
cially the micro-arousals also allow to characterize the micro-
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structure of the electric activity of the brain and the correla-
tion of these phenomena with non EEG signals (for example 
the respiratory flux) allows us to deepen the knowledge on 
the brain mechanisms connected to the sleep disorders (e.g. 
obstructive sleep apneas, central sleep apneas, periodic limb 
movement disorders).   

The visual inspection of temporal recordings by the spe-
cialist leads to the estimation of the frequency contents (the 
rhythms) and their locations in time.  The Time - Frequency 
Representations (TFR) constitute a privileged tool for diag-
nosis assistance [1] as far as the various spectral constituents 
are separately shown with their temporal evolutions.   

The major drawback of these techniques is connected to 
the masking of the constituents with weak energy by those 
with high energy.  Indeed, the transient phenomena often 
appear in the sleep EEG as components with high frequency 
and weak energy.  They are, in addition, embedded in a char-
acteristic component of the stage which is generally of low 
frequency and high energy [2], [3], as shown in Fig. 1.  

In a general way, a tool of data processing stemming from 
biomedical signals such as the EEGs, should allow at the 
same moment to extract relevant information and to propose 
an easily interpretable display by the physician.  Furthermore 
the results from EEG signal analysis have to be validated and 
completed by combining other information resulting from the 
other types of signals (electrocardiogram, electromyogram, 
respiratory flux, etc.).  

The aim of the present work is to bring a complement to 
the TFR by the modal analysis, a parametric approach, using 
the principle of the singular value decomposition.  This 
treatment allows to appreciate the meaning of a frequency 
estimated on a brief interval.  For example, in Fig. 1, a spin-
dle is superimposed to the delta rhythm.  In this example, the 
spindle is clearly detected by visual inspection.  In other 
cases, it may be difficult to distinguish high frequencies due 
to noise from high frequency signals.  
 
 
 
 
 
 
 
 
 

Fig. 1. Example of transients in sleep EEG signal. 
 

Spindle 

K Complex  

oAV'/VV'^'.A^i 



Report Documentation Page

Report Date 
25 Oct 2001

Report Type 
N/A

Dates Covered (from... to) 
- 

Title and Subtitle 
Combining Time Frequency Representation and Parametric
Analysis for the Enhancement of Transients in Sleep EEG
Signal 

Contract Number 

Grant Number 

Program Element Number 

Author(s) Project Number 

Task Number 

Work Unit Number 

Performing Organization Name(s) and Address(es) 
Laboratoire I3S - Universite de Nice-Sophia Antipolis CNRS,
Sophia Antipolis, France

Performing Organization Report Number 

Sponsoring/Monitoring Agency Name(s) and Address(es) 
US Army Research, Development & Standardization Group
(UK) PSC 802 Box 15 FPO AE 09499-1500

Sponsor/Monitor’s Acronym(s) 

Sponsor/Monitor’s Report Number(s) 

Distribution/Availability Statement 
Approved for public release, distribution unlimited

Supplementary Notes 
Papers from 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, October
25-28, 2001, held in Istanbul, Turkey. See also ADM001351 for entire conference on cd-rom., The original document
contains color images.

Abstract 

Subject Terms 

Report Classification 
unclassified

Classification of this page 
unclassified

Classification of Abstract 
unclassified 

Limitation of Abstract 
UU

Number of Pages 
4



 2 of 4

To fall in with the requirements of the application in real 
situation, we first realized an interface allowing to quickly 
investigate the various recording channels and to ask, in an 
interactive way, for one of the Time – Frequency or paramet-
ric proposed analysis.   
 

II. METHODOLOGY 
 

The modal analysis leans on the modeling of the EEG 
signal as the combination of sinusoidal components each with 
its frequency, its phase and its amplitude, which evolve dur-
ing time according to the brain activity during sleep. 

A useful way of description of such time-series is to pre-
dict them and therefore construct a model of their dynamics.  
Typically, biomedical data like EEG signal has strong non-
stationarities.  In such cases, it is very helpful to first resolve 
the non-stationarities by a segmentation into stationarity parts 
and then to identify the deterministic components inherent to 
the data. 

The method, based on the algorithms of Prony and Tufts-
Kumaresan [4, 5], segments the signal in successive phases 
of constant duration (for example 1 second each) and, esti-
mates, in every step, the parameters (frequency, phase and 
amplitude) of the most stable sinusoidal constituents (domi-
nants), constituting the EEG signal in the window of current 
analysis, as shown in (1) and illustrated in Fig. 2.  The data 
segmentation here applied takes into account the EEG sleep 
transient characteristics: a spindle or a micro-arousal reaction 
has a duration of 0.5 – 1 second about.  Hence, the signal is 
decomposed over segments of one-second length and the 
overlapping between successive segments allows to reduce 
boundary effects.  

By this method, N points over one second of EEG data 
can be written as: 
 

 
where P is the number of sinusoidal components, Am, Fm and 
Φm are respectively the amplitude, frequency and phase of the 
mth component and v(n) is the additive noise.  
 The method of Prony allows to define the polynomial c(z) 
by: 
 

 
and to write (1) as: 
 

 
Prony’s method uses (3) by estimating c(z) as the solution 

of the set of equations 
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Prony’s suggestion was to use (4) with L = 4P, for which 

the equation is exactly determined.  Having obtained the 
estimate (z), the frequencies {Fm} are computed by finding 
the roots of the polynomial.  By (3), the roots should all be on 
the unit circle at conjugate pairs, the frequencies are simply 
the phase angles of the roots.  The amplitudes and the phase 
angles are computed as in the maximum likelihood method. 

This approach gives good results in the case of noiseless 
signals: the average relative error of estimation of frequency 
is ~ 1 %, the estimated minimal (normalized) frequency is 
2×10-4.  It should be noted that to correctly estimate the pa-
rameters of a sinusoidal component, the method requires to 
cover at least 5 % of its time period.   

When noise is present, the accuracy of this method dete-
riorates rapidly; the roots of (z) are no longer guaranteed to 
be on the unit circle, however, unless the noise is very high, 
there will be still P pairs of complex conjugate roots. 

Given the noisy nature of the sleep EEG signal, we had to 
modify the method to use it on real signals.  The idea is to 
give more data to the algorithm to decrease the influence of 
noise and to validate the estimations thanks to the a priori 
information about sleep signals. 

The method, commonly referred to as the Tufts-
Kumaresan method, exploits the above idea in a sophisticated 
manner, and it is generally considered to be the best among 
the methods based on the Prony (or linear prediction) ap-
proach.  Taking L > 4P and increasing the order of the poly-
nomial c(z) causes the set of equation (4) to be overdeter-
mined.  From the singular value decomposition (SVD), (4) 
can be solved giving an estimation of the polynomial (z), 
now of degree D > 2P, of the least possible norm [4].  The 
question is then how to extract the 2P “true” roots (the ones 
corresponding to the frequencies of the sinusoids) from the D 
roots of (z).  Tufts and Kumaresan argued that, if the noise is 
not too high, it is very likely that the true roots will close to 
the unit circle, while the noise roots will be closer to the ori-
gin [4].  

In our work, the number of sinusoidal components, con-
sidered in the algorithm for each segment, has been chosen to 
three since, physiologically, it is very improbable to generate 
more than three sleep rhythmic activities in the brain at the 
same time.  Therefore, the algorithm computes the roots of 
(z) and selects the subset of 2P (where P = 3) roots whose 

magnitudes are closest to 1.  The phase angles of these roots 
are the estimated frequencies.  The parameters of amplitude 
and phase of the sinusoidal constituents can be estimated by 
minimizing the mean square error between the EEG signal 
and the reconstructed signal.  
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Fig. 2. - Automatic routine for the analysis of the EEG signals according to 
SVD method for the estimation of the parameters (frequency Fi , amplitude 

Ai and phase Φi ) of the sinusoidal constituents.  
 

It should be noted that particular care is given to the esti-
mation of the frequency of each component.  Tufts-
Kumaresan method produces wildly varying estimates of the 
parameters when the segments being modeled contain non-
sinusoidal components, like noise.  In contrast, much more 
consistent results are obtained for segments with stable sinu-
soidal components, even if their amplitude is small, as in the 
case of spindles.   

This leads to carry out controls to the estimated fre-
quency: its value has to be included between 0 Hz and 20 Hz 
(the normal range of frequency for EEG sleep), it has to be 
coherent with the current sleep stage characteristics that in-
volves to relate the component frequencies between each 
others and with the precedent estimations.  

At the end of the modal analysis, the estimated parame-
ters of the dominant sinusoidal constituents can be written as 
functions of time (frequency F(t) and amplitude A(t)).  They 
are then used to define a weighting function ϕ(t,f) in two 
dimensions (time and frequency) as: 
 

 

 
Fig. 3 shows a simplified schematic diagram of the im-

plemented algorithm.  The effect of this function is to 
heighten, in the TFR, the dominant constituents proportion-
ally to their amplitudes (refer to Fig. 4), as shown in (6) 

 
 
 
 

where S(t,f) indicates the TFR of the EEG signal and �W�I��is 
the TFR  modified by the weighting function. 
 

 
 
 
 
 
 
 
 
Fig. 3. Schema of the algorithm of frequency enhancement in the TFR (indi-
cated as S(t,f)) of an EEG signal (s_eeg(t)) by the results of SVD analysis. 

The filtered TFR is indicated as 
� � � � ���

 
 

Taking into account the values of the amplitudes of the 
stable constituents in the definition of the coefficients of the 
weighting function allows us to separate estimations of fre-
quency resulting from the noise and significant ones gener-
ated by the brain.   

The operation of filtering, applied in time - frequency 
transform obtained by the classic algorithms (Short Time 
Fourier Transform, Continuous Wavelet Transform, etc…), 
allows to improve not only the visual representation of the 
transform, but also the possibility of using a threshold to 
discover the transient phenomena by stressing the frequency 
contents locally estimated at every iteration of the process.   
 

III. RESULTS 

 
Fig. 4 shows (b) the results of the modal analysis com-

pared to Short Time Fourier transform ones and (c) the result 
of filtering the time - frequency representation by the func-
tion defined from the modal analysis.  The used signal, repre-
sented there (a), is a segment of 10 seconds of a real EEG 
signal during a phase of disturbed REM sleep.  

 
Fig. 4: (a) 10 seconds of EEG of sleep; (b) S(t,f)  (outlines) and modal analy-
sis in interrupted lines (features); (c) 

� � � � ���
the TFR of (a) modified by the 

result of the modal analysis. 
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The figure (b) shows in interrupted lines (features) the 

evolution of the frequency of the dominant sinusoidal con-
stituent obtained by the algorithm in function of time.   

It should be noted that this frequency is not always visible 
on the TFR, for example around the 6-th second.  The figure 
(c) allows to appreciate the effect of the filtering of the repre-
sentation which puts in evidence the significant constituents 
with high frequency (spindles), sometimes masked in the 
Time - frequency representation (b).   
 

IV. DISCUSSION 
 

It has been shown how to heighten in a TFR, certain sig-
nals of weak amplitude and high frequency, as spindles, by 
making sure of the stability of the frequency.  So, one im-
proves the detection of these transients in case where the 
visual detection is difficult or impossible.  This fine study of 
the EEG signal is necessary to define the signature of tran-
sient events such as sleep apneas and to propose a measure of 
their impact on the nervous system.   

A practical problem is that the Tufts-Kumaresan method 
involves user-chosen parameters, the number of observations 
L and the order D. It has been claimed, based on empirical 
evidence, that D = 3L/4 is optimal or nearly so.  This is a 
reasonable choice only if L is relatively small, say on the 
order of 40 or less, to allow a fast analysis on sleep EEG 
data.  Also, the optimal L is necessarily dependent on the 
number of sinusoids, their frequencies, and the signal to noise 
ratio, so an excessive reliance on this thumb rule is not rec-
ommended. 
 

V. CONCLUSION 
 

We brought an additional tool to the classic Time – fre-
quency analysis which looks for the meaning of the most 
stable frequencies, that is the least scattered during the inter-
val of observation.  One so has a tool adapted to the revealing 
of synchronization processes in brain activity. 

Moreover, the modal analysis has shown to be a particular 
powerful data analysis technique, if data is not purely noise 
driven but contains some deterministic sinusoidal compo-
nents.   

 

 
 
This technique gives a useful decomposition into artifacts 

(noise) and several components that represent typical EEG 
sleep bands (e.g. �� �� �DFWLYLW\�� 

The decompositions (segments, sinusoidal components) 
obtained can then serve as a basis for neuro-physiological 
model building, which might involve further steps. 

An important springing of this method is to reduce the in-
formation contained in the signal in some parameters or indi-
cators that could be correlated more easily among them, to 
establish possible relations between the pathologies and sleep 
signal.  Indeed, the method allows to establish relations be-
tween the parameters of every signal and to facilitate the 
analysis of the correlations between the various ways of ac-
quisition of the sleep signals.  

Another advantage of the local detection of the sinusoidal 
parameters of the signal is the possibility to use the obtained 
results for the synthesis of the signals, in particular for mod-
eling and data compression.  
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